Capitulo1
Capitulo2
Capitulo3
Capitulo4
Capitulo5
Capitulo6
Capitulo7
Capitulo8
Capitulo2
Capitulo3
Capitulo11
Capitulo12
Capitulo13
Capitulo14
Capitulo15
Capitulo16
Capitulo17


1. DeFronzo RA, Ferrannini E: Regulation of intermediary metabolism during fasting and feeding. In Endocrinology. Edited by DeGroot LJ, Jameson JL. Philadelphia:WB Saunders; 2001:737–755.

2. Baker J, Liu JP, Robertson EJ, Efstratiadis A: Role of insulin-like growth factors in embryonic and postnatal growth. Cell 1993, 75:73–82.

3. Liu JP, Baker J, Perkins JA, et al.: Mice carrying null mutations of the genes encoding insulin-like growth factor I (lgf-1) and type 1 IGF receptor (lgf1r). Cell 1993, 75:59–72.

4. Withers DJ, Burks DJ,Towery HH, et al.: Irs-2 coordinates Igf-1 receptor-mediated beta-cell development and peripheral insulin signalling. Nat Genet 1999, 23(1):32–40.

5. Lupu F, Terwilliger JD, Lee K, et al.: Roles of growth hormone and insulin-like growth factor 1 in mouse postnatal growth. Dev Biol 2001, 229(1):141–162.

6. Dudek H, Datta SR, Franke TF, et al.: Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 1997, 275:661–665.

7. Hellstrom A, Perruzzi C, Ju M, et al.: Low IGF-I suppresses VEGF-survival signaling in retinal endothelial cells: direct correlation with clinical retinopathy of prematurity. Proc Natl Acad Sci U S A 2001, 98(10):5804–5808.

8. Pete G, Fuller CR, Oldham JM, et al.: Postnatal growth responses to insulin-like growth factor I in insulin receptor substrate-1–deficient mice. Endocrinology 1999, 140(12):5478–5487.

9. Reaven GM: Banting Lecture 1988. Role of insulin resistance in human disease. 1988 [classical article]. Nutrition 1997, 13(1):65.

10. Halban PA, Kahn SE, Lernmark A, Rhodes CJ: Gene and cell-replacement therapy in the treatment of type 1 diabetes: how high must the standards be set? Diabetes 2001, 50(10):2181–2191.

11. DeFronzo RA: Pathogenesis of type 2 diabetes: Metabolic and molecular implications for identifying diabetes genes. Diabetes Rev 1997, 5(3):177–269.

12. Cline GW, Rothman DL, Magnusson I, et al.: 13C-nuclear magnetic resonance spectroscopy studies of hepatic glucose metabolism in normal subjects and subjects with insulin-dependent diabetes mellitus. J Clin Invest 1994, 94:2369–2376.

13. Bruning JC, Michael MD, Winnay JN, et al.: A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol Cell 1998, 2(5):559–569.

14. Savkur RS, Philips AV, Cooper TA: Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nat Genet 2001, 29(1):40–47.

15. Burghes AH,Vaessin HE, de La Chapelle A: Genetics.The land between Mendelian and multifactorial inheritance. Science 2001, 293(5538):2213–2214.

16. Sreenan SK, Zhou YP, Otani K, et al.: Calpains play a role in insulin secretion and action. Diabetes 2001, 50(9):2013–2020.

17. Horikawa Y, Oda N, Cox NJ, et al.: Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat Genet 2000, 26(2):163–175.

18. Freychet P, Roth J, Neville DM, Jr: Insulin receptors in the liver: specific binding of [125I] insulin to the plasma membrane and its relation to insulin bioactivity. Proc Natl Acad Sci U S A 1971, 68:1833–1837.

19. White MF, Kahn CR:The insulin signaling system. J Biol Chem 1994, 269(1):1–4.

20. Yenush L,White MF:The IRS-signaling system during insulin and cytokine action. Bio Essays 1997, 19(5):491–500.

21. Withers DJ, Gutierrez JS,Towery H, et al.: Disruption of IRS-2 causes type 2 diabetes in mice. Nature 1998, 391(6670):900–904.

22. Kulkarni RN, Bruning JC, Winnay JN, et al.: Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell 1999, 96(3):329–339.

23. White MF, Livingston JN, Backer JM, et al.: Mutation of the insulin receptor at tyrosine 960 inhibits signal transmission but does not affect its tyrosine kinase activity. Cell 1988, 54:641-649.

24. White MF, Shoelson SE, Keutmann H, Kahn CR:A cascade of tyrosine autophosphorylation in the beta-subunit activates the insulin receptor. J Biol Chem 1988, 263:2969–2980.

25. Frasca F, Pandini G, Scalia P, et al.: Insulin receptor isoform A, a newly recognized, high-affinity insulin-like growth factor II receptor in fetal and cancer cells. Mol Cell Biol 1999, 19(5):3278–3288.

26. White MF, Maron R, Kahn CR: Insulin rapidly stimulates tyrosine phosphorylation of a Mr 185,000 protein in intact cells. Nature 1985, 318:183–186.

27. Sun XJ, Rothenberg PL, Kahn CR, et al.: The structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature 1991, 352:73–77.

28. Sun XJ,Wang LM, Zhang Y, et al.: Role of IRS-2 in insulin and cytokine signalling. Nature 1995, 377:173–177.

29. Sawka-Verhelle D, Tartare-Deckert S,White MF, Van Obberghen E: Insulin receptor substrate-2 binds to the insulin receptor through its phosphotyrosine-binding domain and through a newly identified domain comprising amino acids 591-786. J Biol Chem 1996, 271(11):5980–5983.

30. He W, Craparo A, Zhu Y, et al.: Interaction of insulin receptor substrate-2 (IRS-2) with the insulin and insulin-like growth factor I receptors. Evidence for two distinct phosphotyrosine-dependent interaction domains within IRS-2. J Biol Chem 1996, 271(20):11641–11645.

31. Uchida T, Myers MG Jr, White MF: IRS-4 mediates activation of PKB/Akt during insulin stimulation without inhibition of apoptosis. Mol Cell Biol 2000, 20(1):126–138.

32. Xu P, Jacobs AR,Taylor SI: Interaction of insulin receptor substrate 3 with insulin receptor, insulin receptor-related receptor, insulin-like growth factor-1 receptor, and downstream proteins. J Biochem 1999, 274:15262–15270.

33. Yenush L, Zanella C, Uchida T, et al.: The pleckstrin homology and phos-photyrosine binding domains of insulin receptor substrate 1 mediate inhibition of apoptosis by insulin. Mol Cell Biol 1998, 18(11):6784–6794.

34. Burks DJ, Pons S,Towery H, et al.: Heterologous PH domains do not mediate coupling of IRS-1 to the insulin receptor. J Biol Chem 1997, 272(44):27716–27721.

35. Wolf G,Trub T, Ottinger E, et al.: The PTB domains of IRS-1 and Shc have distinct but overlapping specificities. J Biol Chem 1995, 270:27407–27410.

36. Burks DJ,Wang J,Towery H, et al.: IRS pleckstrin homology domains bind to acidic motifs in proteins. J Biol Chem 1998, 273(47):31061–31067.

37. Farhang-Fallah J,Yin X,Trentin G, et al.: Cloning and characterization of PHIP, a novel insulin receptor substrate-1 pleckstrin homology domain interacting protein. J Biol Chem 2000, 275(51):40492–40497.

38. Pawson T, Scott JD: Signaling through scaffold, anchoring, and adaptor proteins. Science 1997, 278(5346):2075–2080.

39. Toker A, Cantley LC: Signalling through the lipid products of phospho-inosite- 3-OH kinase. Nature 1997, 387:673–676.

40. Cross DAE,Alessi DR, Cohen P, et al.: Inhibition of glycogen synthase kinase-3 by insulin mediated protein kinase B. Nature 1996, 378:785–787.

41. Brazil DP, Hemmings BA: Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem Sci 2001, 26(11):657–664.

42. Farese RV: Insulin-sensitive phospholipid signaling systems and glucose transport. Update II. Exp Biol Med 2001, 226(4):283–295.

43. Standaert ML, Bandyopadhyay G, Kanoh Y, et al.: Insulin and PIP3 activate PKC-zeta by mechanisms that are both dependent and independent of phosphorylation of activation loop (T410) and autophosphorylation (T560) sites. Biochemistry 2001, 40(1):249–255.

44. Ceresa BP, Pessin JE: Insulin regulation of the Ras activation/inactivationcycle. Mol Cell Biochem 1998; 182(1–2):23–29.

45. Pende M, Kozma SC, Jaquet M, et al.: Hypoinsulinaemia, glucose intolerance and diminished beta-cell size in S6K1-deficient mice. Nature 2000, 408(6815):994–997.

46. Isotani S, Hara K,Tokunaga C, et al.: Immunopurified mammalian targetof rapamycin phosphorylates and activates p70 S6 kinase alpha in vitro. J Biol Chem 1999, 274(48):34493–34498.

47. Avruch J, Belham C,Weng Q, et al.:The p70 S6 kinase integrates nutrient and growth signals to control translational capacity. Prog Mol Subcell Biol 2001, 26:115–154.

48. Czech MP: Molecular actions of insulin on glucose transport. Annu Rev Nutr 1995, 15:441–471.

49. Saltiel AR, Kahn CR: Insulin signalling and the regulation of glucose and lipid metabolism. Nature 2001, 414(6865):799–806.

50. Roach PJ: Control of glycogen synthase by hierarchal protein phosphorylation. FASEB J 1990, 4(12):2961–2968.

51. Cross DA,Alessi DR, Cohen P, et al.: Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 1995, 378(6559):785–789.

52. Haystead TAJ, Sim AT, Carling D, et al.: Effects of the tumour promoter okadaic acid on intracellular protein phosphorylation and metabolism. Nature 1989, 337:78–81.

53. Brady MJ, Saltiel AR:The role of protein phosphatase-1 in insulin action. Recent Prog Horm Res 2001, 56:157–173.

54. Newgard CB, Brady MJ,O’Doherty RM, Saltiel AR: Organizing glucose disposal: emerging roles of the glycogen targeting subunits of protein phosphatase-1. Diabetes 2000, 49(12):1967–1977.

55. Brady MJ, Kartha PM,Aysola AA, Saltiel AR:The role of glucose metabolitesin the activation and translocation of glycogen synthase by insulin in3T3-L1 adipocytes. J Biol Chem 1999, 274(39):27497–27504.

56. Rhoads RE: Signal transduction pathways that regulate eukaryoticprotein synthesis. J Biol Chem 1999, 274(43):30337–30340.

57. Mendez R, Kollmorgen G,White MF, Rhoads RE: Requirement of protein kinase C zeta for stimulation of protein synthesis by insulin. Mol Cell Biol 1997, 17(9):5184–5192.

58. Proud CG, Denton RM: Molecular mechanisms for the control of translation by insulin. Biochem J 1997, 328(Pt 2):329–341.

59. Brunn GJ, Hudson CC, Sekulic A, et al.: Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science 1997, 277(5322):99–101.

60. Waskiewicz AJ, Johnson JC, Penn B, et al.: Phosphorylation of the capbinding protein eukaryotic translation initiation factor 4E by protein kinase Mnk1 in vivo. Mol Cell Biol 1999, 19(3):1871–1880.

61. Minich WB, Balasta ML, Goss DJ, Rhoads RE: Chromatographic resolution of in vivo phosphorylated and nonphorphorylated eukaryotic translation initiation factor eIF-4E: Increased cap affinity of the phosphorylated form. Proc Natl Acad Sci U S A 1994, 91:7668–7672.

62. Morley SJ, Dever TE, Etchison D,Traugh JA: Phosphorylation of eIF-4F byprotein kinase C or multipotential S6 kinase stimulates protein synthesisat initiation. J Biol Chem 1991, 266(8):4669–4672.

63. Sinaud S, Balage M, Bayle G, et al.: Diazoxide-induced insulin deficiency greatly reduced muscle protein synthesis in rats: involvement of eIF4E. Am J Physiol 1999, 276(1 Pt 1):E50–E61.

64. Redpath NT, Price NT, Severinov KV, Proud CG: Regulation of elongation factor-2 by multisite phosphorylation. Eur J Biochem 1993, 213(2):689–699.

65. Proud CG,Wang X, Patel JV, et al.: Interplay between insulin and nutrients in the regulation of translation factors. Biochem Soc Trans 2001, 29(Pt 4):541–547.

66. Kilberg MS, Handlogten ME, Christensen HN: Characteristics of anamino acid transport system in rat liver for glutamine, asparagine, histidine,and closely related analogs. J Biol Chem 1980, 255(9):4011–4019.

67. Pandey SK, He HJ, Chesley A, et al.:Wortmannin-sensitive pathway is required for insulin-stimulated phosphorylation of inhibitor kappaBalpha. Endocrinology 2002, 143(2):375–385.

68. Di Guglielmo GM, Drake PG, Baass PC, et al.: Insulin receptor internalization and signalling. Mol Cell Biochem 1998, 182(1–2):59–63.

69. Ahmad F, Azevedo JL, Cortright R, et al.:Alterations in skeletal muscle protein-tyrosine phosphatase activity and expression in insulin-resistant human obesity and diabetes. J Clin Invest 1997, 100(2):449–458.

70. Ahmad F, Considine RV, Bauer TL, et al.: Improved sensitivity to insulin in obese subjects following weight loss is accompanied by reduced protein-tyrosine phosphatases in adipose tissue. Metabolism 1997, 46(10):1140–1145.

71. Ahmad F, Goldstein BJ: Increased abundance of specific skeletal muscle protein-tyrosine phosphatases in a genetic model of insulin-resistant obesity and diabetes mellitus. Metabolism 1995, 44(9):1175–1184.

72. Ahmad F, Considine RV, Goldstein BJ: Increased abundance of the receptor-type protein-tyrosine phosphatase LAR accounts for the elevated insulin receptor dephosphorylating activity in adipose tissue of obese human subjects. J Clin Invest 1995, 95(6):2806–2812.

73. McGuire MC, Fields RM, Nyomba BL, et al.:Abnormal regulation of protein tyrosine phosphatase activities in skeletal muscle of insulinresistant humans. Diabetes 1991, 40:939–942.

74. Zabolotny JM, Kim YB, Peroni OD, et al.: Overexpression of the LAR (leukocyte antigen-related) protein-tyrosine phosphatase in muscle causes insulin resistance. Proc Natl Acad Sci U S A 2001, 98(9):5187–5192.

75. Elchebly M, Payette P, Michaliszyn E, et al.: Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase- 1B gene [see comments]. Science 1999, 283(5407):1544–1548.

76. Klaman LD, Boss O, Peroni OD, et al.: Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Mol Cell Biol 2000, 20(15):5479–5489.

77. Goldfine ID, Maddux BA,Youngren JF, et al.: Membrane glycoprotein PC- 1 and insulin resistance. Mol Cell Biochem 1998, 182(1–2):177–184.

78. Frittitta L, Ercolino T, Bozzali M, et al.:A cluster of three single nucleotide polymorphisms in the 3’-untranslated region of human glycoprotein PC-1 gene stabilizes PC-1 mRNA and is associated with increased PC-1 protein content and insulin resistance-related abnormalities. Diabetes 2001, 50(8):1952–1955.

79. Srinivas PR, Deutsch DD, Mathews ST, et al.: Recombinant human alpha 2-HS glycoprotein inhibits insulin-stimulated mitogenic pathway without affecting metabolic signalling in Chinese hamster ovary cells overexpressing the human insulin receptor. Cell Signal 1996, 8:567–573.

80. Moyers JS, Bilan PJ, Reynet C, Kahn CR: Overexpression of Rad inhibitsglucose uptake in cultured muscle and fat cells. J Biol Chem 1996,271(38):23111–23116.

81. Takada T, Matozaki T,Takeda H, et al.: Roles of the complex formation ofSHPS-1 with SHP-2 in insulin-stimulated mitogen-activated proteinkinase activation. J Biol Chem 1998, 273(15):9234–9242.

82. Baron SH: Salicylates as hypoglycemic agents. Diabetes Care 1982,5(1):64–71.

83. Baud V, Karin M: Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol 2001, 11(9):372–377.

84. Yuasa T, Ohno S, Kehrl JH, Kyriakis JM:Tumor necrosis factor signaling tostress-activated protein kinase (SAPK)/Jun NH2-terminal kinase (JNK)and p38. Germinal center kinase couples TRAF2 to mitogen-activatedprotein kinase/ERK kinase kinase 1 and SAPK while receptor interactingprotein associates with a mitogen-activated protein kinase kinase kinaseupstream of MKK6 and p38. J Biol Chem 1998, 273(35):22681–22692.

85. Kuan CY,Yang DD, Samanta Roy DR, et al.:The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron 1999, 22(4):667–676.

86. Rincon M,Whitmarsh A,Yang DD, et al.:The JNK pathway regulates thein vivo deletion of immature CD4(+)CD8(+) thymocytes. J Exp Med1998, 188(10):1817–1830.

87. Aguirre V, Uchida T,Yenush L, et al.:The c-Jun NH2-terminal kinasepromotes insulin resistance during association with insulin receptorsubstrate-1 and phosphorylation of Ser307. J Biol Chem 2000,275(12):9047–9054.

 voltar